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The Generalized TLM-Based FDTD Modeling of
Frequency-Dependent and Anisotropic Media

Zhizhang Chen and Jian Xu

Abstract—A generalization of the previously proposed transmission-
line matrix (TLM)-based finite-difference time-domain (FDTD) method
is presented for modeling frequency-dependent and anisotropic media.
The generalized scheme incorporates electric- and magnetic-flux densities
in addition to variable mesh sizes. Since it is in an FD form, modeling
techniques developed for the conventional FDTD can be easily adapted
into the proposed TLM-based technique. In this paper, a modifiedzzz-
transform technique for frequency-dependent media is implemented, and
a two-dimensional (2-D) full-wave technique for guided-wave structures
is developed. In all the FDTD computations, no conversions between the
field quantities and TLM circuit parameters such as open- and short-
circuited stubs are required.

Index Terms—Anisotropic, FDTD, frequency dependent, TLM.

I. INTRODUCTION

Time-domain numerical methods have been shown to be powerful
for solving electromagnetic related problems. These time-domain
methods have received growing attention because of their versatility
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and simplicity. Two widely employed techniques so far are the finite-
difference time-domain (FDTD) method of the Yee’s grid [1] and the
transmission-line matrix (TLM) method initially proposed by Johns
[2]. The FDTD method is fairly easy to understand and implement, as
it is the direct approximation of the Maxwell’s equations. While the
TLM, which uses the analogy between voltage and current waves in a
transmission-line network and electromagnetic waves in space, is with
less numerical dispersion. However, the TLM requires a conversion
between the field quantities and circuit parameters to obtain the
appropriate scattering matrix. For most of the cases, the conversions
are not complicated, but sometimes they are not very straightforward
and not easily understood, e.g., derivations of various impedances
and open/short stub parameters related to variable grid sizes and
medium inhomogeneity. To circumvent the problem, an FDTD and
TLM combined technique—the TLM-based FDTD method equivalent
to the TLM symmetrical condensed node—was proposed by Chen,
Ney, and Hoefer [3], [4] while the work for the TLM expanded node
was reported earlier by Voelker and Lomax [5].

The TLM-based FDTD is essentially the formulation of the TLM
method in an FDTD fashion. It reveals the exact correspondence
between the TLM and FDTD methods and the alternative ways of
realizing the TLM concepts. Subsequent work on the more general
correspondence was shown in [6]. The accuracy and dispersion
comparisons between the TLM-based FDTD and the other FDTD
schemes were presented in [7]. The TLM-based FDTD is found to
have less numerical dispersion than the Yee’s FDTD, but requires a
little more memory space.

In this paper, the previously proposed TLM-based FDTD [3] is fur-
ther exploited and generalized to include frequency dependence and
anisotropics of a medium. Electromagnetic flux quantities aredirectly
incorporated into the FDTD scheme and, therefore, a wide range of
different media can be tackled. In this paper, frequency-dependent and
anisotropic media are specifically treated. The successful applications
of the technique shown in the following sections demonstrate the
flexibility of the proposed FDTD method with its ease in adapting
a different modeling scheme, e.g., thez-transform technique and
the two-dimensional (2-D) full-wave technique. In all the proposed
FDTD computations, no conversions between the field quantities and
the TLM circuit parameters and stub-related operations are required.
In addition, a normalizing procedure is also introduced to account
for variable mesh sizes.

II. THE GENERALIZATION OF THE TLM-BASED FDTD FORMULATION

In a general three-dimensional (3-D) case, Maxwell’s curl equa-
tions in a stationary and sourceless medium can be expressed in the
rectangular coordinates. For instance, forDx andBy

@Dx

@t
=

@Hx

@y
�

@Hy

@z
� �eyEx (1)

@By

@t
=

@Ez

@x
�

@Ex

@z
� �myHy (2)

where �e and �m are, respectively, the equivalent electric and
magnetic conductivities. Note that unlike the TLM-based FDTD
developed so far, the flux densities are used in the equations.

Following the conventional notation, a function of the discretized
space and time is denoted as

F (i �x; j �y; k �z; n �t) = F
n
(i; j; k): (3)
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(a)

(b)

Fig. 1. (a) Grid arrangement for the TLM-based FDTD scheme. (b) Diagram
illustrating the averaging process.

Here, �t is the time step, and�x, �y, and �z are the spatial steps.
The spatial steps are not necessarily equal for a nonuniform grid.

The grid arrangement for a 3-D cell is the same as that presented in
[3] with the exception that, now at the center of the 3-D cell, not only
the six field components ofEEE, HHH are defined, but more importantly,
their corresponding flux densitiesDDD and BBB are also defined [see
Fig. 1(a)]. Again, at the boundary surfaces of each 3-D cell, only the
field components tangential to the surfaces are considered.

Similarly to that developed in [3], the recursive FDTD computation
process at each time step involves the following two half-time-step
operations:

1) updating of flux components at the center of a 3-D cell on the
first half time step;

2) updating of the field components at the boundary surfaces of
the cell on the second half-time step.

In 1), however, only the flux quantities are computed. Therefore,
additional computations are required to update the field components at
the center of a 3-D cell. The following details the whole computation
process which also include a normalizing procedure to account for
the use of variable mesh sizes.

A. Updating of Flux Components at the Center of a 3-D Cell

To update the flux components at the center, Maxwell’s equations
are applied. By simply finite-differencing Maxwell’s equations, in
respect to the center of a 3-D cell [denoted as(i; j; k)], an FD
formulation can be obtained easily. For example, forDx and By

components, one can obtain
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(5)

The equations for the other components can be obtained in a similar
way.

B. The Additional Computations:Updating of Field Components
at the Center of a 3-D Cell from the Flux Quantities

Once the flux quantities are obtained, theE andH at the center of
a cell can be updated through a solution of the medium constitutive
relationship (which is supposed to be known or can be found) as
follows:

D =D(E; H) (6)

B =B(E; H): (7)

The different types of media present different forms of constitutive
relationships. They will be described in more details in Section IV
on the individual problem basis.

C. Updating of Field Components at the
Boundary Surfaces of a 3-D Cell

After the field components at the center of a 3-D cell are deter-
mined, the field components at the boundary surfaces of the cell can
be updated through a special averaging process in both space and
time.

Suppose that a normalizing length�l is selected, which is less
than or equal to the smallest cell size over the grid. A time step
�t = s �l=co can then be chosen, withco being the speed of light
in vacuum.s is the so-called stability factor which determines the
numerical dispersion characteristics and stability as shown in [7].
When the dimensional factors = 0:5, the FDTD becomes exactly
equivalent to the 3-D TLM symmetrical condensed node.

The mesh size of a 3-D cell of�x��y��z can then be normalized
to �l as follows:

u = �x=�l (�1) (8)

v = �y=�l (�1) (9)

w = �z=�l (�1): (10)

A set of equations can now be obtained based on the TLM scheme,
or equivalently, the averaging process described in [6]. Another way
of obtaining them is by so-called “characteristic decomposition” [8].
For example, at surface point(i; j; k + 1

2
), which interfaces the

cell centered at(i; j; k) and the cell centered at(i; j; k + 1), one
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can have (11) and (12), shown at the bottom of the page. Here,
Zo = �o="o is the free-space impedance andqy is a cell-size
related constant which determines the type of TLM node the proposed
FDTD is equivalent to. For instance, selectingqy = 1 will make the
proposed FDTD equivalent to the TLM symmetrical condensed node
while usingqy = �yuw=v will make the FDTD equivalent to the
TLM hybrid symmetrical condensed node. These equivalencies can
be easily seen in [6].

The averaged quantities areuEx � qyvZoHy. They are averaged
over thez-direction. Equation (11) is the result of averaging over
the cell centered at(i; j; k) while (12) is the result of averaging
over the neighboring cell centered at(i; j; k + 1). Fig. 1(b) shows
the averaging diagram. As to the� signs,uEx + qyvZoHy is used
in (11) sinceEEExxx �HHHyyy points to(i; j; k + 1

2
) at which the surface

field values are to be found. In (12),uEx� qyvZoHy is taken since
EEExxx � (�HHHyyy) points to (i; j; k + 1

2
).

The solutions of (11) and (12) read as (13) and (14), shown at the
bottom of the next page.

The above equations permit the update ofEx and Hy at the
boundary surfacez = (k + 1

2
) �z in terms of field values of the

previous time step, at the boundary surfaces between two cells, and
at the centers of two neighboring cells.

The equations for the other components can be obtained in a similar
way.

To facilitate the efficient programming and fast computation, (4)
and (5), which are used for updating the field components at the
center of a 3-D cell, can be rewritten in the following form:
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wheregx = (vw=u)(�ex �t="o) andry = (uw=v)(�mx �t=�o).
The reason for this reformulation is that together with (11) and

(12), uEx, wEz, vZoHy, andwZoHz can now be considered as
the quantities for computation instead ofEx, Ez , Hy, andHz. The
computation counts are thus reduced.

Careful examinations of all the FDTD equations indicate that
many terms are identical and need to be computed only once. In
the averaging equations such as (11) and (12),uEx � qyvZoHy

is one of them. As a result, the computation counts are further
reduced and can be found to be the same as the recently developed
symmetrical super-condensed node (SSCN) [9] since in both cases no

stub-related operations are required. Yet in the proposed TLM-based
FDTD scheme, no conversions between the constitutive parameters
and circuit parameters used in the TLM model are required. More-
over, because of the proposed FDTD form, any other techniques
developed for the Yee’s FDTD can easily be adapted as shown in
Section III.

III. N UMERICAL RESULTS

Two examples are computed here: firstly, propagation in frequency-
dependent media; secondly, the dispersion of a microstrip line with
an electrically and magnetically anisotropic substrate. In all the
computations,Zo = �o="o andq0s = 1 are used for simplicity as
they are constant independent of the medium types and mesh sizes.

Example 1.—A Plane Wave Incident on the Half-Space Filled
With Second- and Fourth-Order Lorentz Medium:A plane wave
propagating in thez-direction was considered. The half-spacez < 0

is air while the other halfz > 0 is filled with the second-order
dispersive Lorentz medium whose dispersion is specified by

�(!) = �1 �

(�s � �1)

1 + j2�
!

!o
�

!

!o

2
(17)

where�s = �(f = 0), �1 = �(f =1), !o is the resonant frequency
and� is the damping coefficient. Their values are taken from [11]

�s =2:25�o

�1 = �o

!o =4:0� 10
16 rad/s

� =0:14� 10
16 s�1:

In order to apply (17) to the time-domain simulation, a frequency-
to-time conversion is required. In this case, the modifiedZ-transform
described in [10] is employed. The result is the recursive time-
domain constitutive relationship betweenEEE andDDD which replaces
the constitutive relationships (6) and (7) in the following proposed
FDTD computation:
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where c1, c2, and c3 are constants, as defined in [10].
The above equations permit the updating of theE- andH-field

components from the flux densityD andB at the center of a 3-D cell.
To demonstrate the accuracy of the proposed method, the wide-

band reflection coefficient was computed with the FDTD method. A
single impulse having a spectrum from dc to infinity was injected
so as to be normally incident on the interface. Data was taken at
every time step (�t = 2:0� 10

�19 s) from a fixed observation point
on the vacuum side of the interface. Fig. 2 compares the FDTD-
computed magnitude and phase of the reflection coefficients as a
function of frequency to the exact solution [11]. The deviation from
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Fig. 2. Comparison of the FDTD and exact results from dc to 30 000 THz
for the reflection coefficient of a half-plane made of Lorentz medium.

the exact solution over the complete range of dc to 3� 1016 Hz is
not visible.

To further demonstrate the effectiveness of the proposed FDTD
scheme, an attempt was also made to compute the wave incident on
a higher order dispersive medium, namely, a fourth-order dispersive
medium. The geometry and parameters was selected the same as
those used in [12]. The excitation is a Gaussian-pulse plane wave.
The pulse initially has a spatial width of 256 cells between the
0.001 amplitude points and contains energy of frequency up to 80
GHz.

Spatial plots of electric field versus positions for the pulse are
shown in Fig. 3 as the pulse is reflected from the interface and
propagates in the dispersive medium. The extremely dispersive nature
of the medium is clearly visible. Good agreement is found between
these results and those presented in [12].

Example 2. Calculation of Dispersion Relation of a Microstrip Line
With an Anisotropic Substrate:In this example, a microstrip line
deposited on an electrically and magnetically anisotropic substrate is
considered (see Fig. 4). The geometry and parameters are taken to
be the same as those used in [13]. The constitutive relations for the
substrate are then

D = [�]E (21)

B = [�]H (22)

where
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2
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2
�
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2
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2
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2
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2
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Fig. 3. Electric field versus position for a pulse plane wave incident from
vacuum onto the fourth-order dispersive medium.

and

�13 = j�31 = (�z2 � �x2) sin(� +��) cos(� +��):

� and � + �� represent the rotation angles for the permittivity and
permeability tensors in thex–z plane.

To compute the dispersion in an efficient way, the 2-D full-wave
technique recently developed on the Yee’s FDTD grid [14] was
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Fig. 4. Calculated dispersion of the open microstrip line with simultaneously
rotated material axes.

adapted into the proposed FDTD technique. In the same way as that
described in [14], one can assume

[Dx; Dy; Bz ] = [Dx(x; y); Dy(x; y); Bz(x; y)]je
�j�z (23)

[Bx; By; Dz ] = [Bx(x; y); By(x; y); Bz(x; y)]e
�j�z (24)

[Ex; Ey; Hz ] = [Ex(x; y); Ey(x; y); Hz(x; y)]je
�j�z (25)

[Hx; Hy; Ez ] = [Hx(x; y); Hy(x; y); Ez(x; y)]e
�j�z

: (26)

Substitution of these equations into the proposed FDTD formulation
and application of�z ! 0 leads to a 2-D full-wave TLM-based
FDTD formulation for guided wave structures. For instance, (15)
becomes
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and (13) becomes
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Note that the third-dimensionz is now closed and indexk disappears.
For the other components, the equations can be obtained in a similar
way.

Fig. 4 shows the calculated dispersion characteristics of the open
microstrip line. Two cases are computed: 1)� = 0, �� = 0 and
2) � = 15�, �� = 58�. The results are shown against the results
obtained with the spectrum domain technique [13]. They are found
to be in very good agreement. Due to the symmetry, only half of the
structure was computed with a magnetic wall placed atx = 0. An 8
� 8 nonuniform grid is used. Coordinates of the grid mesh inx- and
y-directions are 0, 0.125, 0.25, 0.375, 0.5, 0.63, 0.93, 1.93, 5.0 mm
and 0, 0.125, 0.25, 0.375, 0.5, 0.63, 1.0, 2.0, 5.0 mm. 10 000 time
iterations are used. On a DEC ALPHA 600/266 MHz workstation,
calculations for each frequency point take about 40 s.

IV. DISCUSSIONS ANDCONCLUSIONS

In this paper, the TLM-based FDTD formulation for Maxwell’s
equations is generalized for modeling frequency-dependent and
anisotropic media. Both electric and magnetic flux quantities and

variable mesh sizes are incorporated into the algorithm. The method
is still a TLM-based technique realizing the TLM concepts, but
is formulated in an FDTD fashion. As a result, various techniques
which have been developed for the other FDTD methods (such as the
Yee’s FDTD) can be easily adapted into the TLM-based method. In
this paper, the implementation of the modifiedZ-transform technique
for the frequency-dependent media and the compact 2-D full-wave
technique for guided-wave structures are demonstrated. In all these
computations, no conversions between the field quantities and the
TLM circuit parameters and stub-related operations are required.
Finally, it is worth mentioning that the authors have also successfully
adapted a nonlinear modeling scheme and perfectly matched layer
(PML) into the TLM-based FDTD [15].
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